Navitas

Let’s go GaNFast™

GaNFast™ Power IC Modeling

Jason Zhang, VP of Application and Engineering

CPSSC, Nov 2019
• Introduction
• Spectre models for IC Design
• SPICE models for detailed system simulation
• SIMPLIS models for high level system simulation
• System simulation example: Active Clamp Flyback
• Conclusions
• Introduction
• Spectre models for IC Design
• SPICE models for detailed system simulation
• SIMPLIS models for high level system simulation
• System simulation example: Active Clamp Flyback
• Conclusions
Navitas eMode Power FET Technology

- Large RQ FOM advantage
 - High frequency, high power density
- Lateral
 - Convenient voltage isolation
 - Multi device and IC integration
- Standard CMOS production
 - High yield, high capacity, multilevel metallization
 - Ideal for power IC development
650 V Monolithic GaN Integration

World’s First
GaN Power ICs

• Complicated power IC development requires capable process and IC design environment
 • PDK (Process Design Kit) is essential to reliability and manufacturability of IC products
 • Process corners, mismatch, temperature effect, layout parasitic, and design verification
• Accurate device modeling is essential part of PDK
 • Multi tiered models are developed for accurate and fast system simulation
• Introduction
• Spectre models for IC Design
• SPICE models for detailed system simulation
• SIMPLIS models for high level system simulation
• System simulation example: Active Clamp Flyback
• Conclusions
Power IC Spectre Models: IC Development

• Excellent process design kit:
 • Device symbols
 • Pcells for automated device construction
 • Scalable, accurate
 • Verified for schematic and layout rules
 • Layout parasitic extraction

• Angelov, ASM and silicon models are not suitable
 • Lack of dMode, scalability, flexibility, speed

• Navitas GaN eMode FET scalable VerilogA model
 • Flexible: customized features/equations
 • High correlation between simulation and product
 • High-speed simulations
Accurate over Temperature

- GaN FET I_DV_G Model with Temperature Effects
 - Solid lines = measured, dotted lines = Cadence simulation
Accurate over Drain Voltage

- Solid lines = measured, dotted lines = Cadence Spectre
- 20V rated eMode FET
- 650V rated eMode FET
Bi-directional Drain Current vs. V_D, V_G

650V device model simulation with self-heating effects in Spectre

Operation not allowed due to excess V_{gd}
Introduction

Spectre models for IC Design

SPICE models for detailed system simulation

SIMPLIS models for high level system simulation

System simulation example: Active Clamp Flyback

Conclusions
Spice Models: Application Simulation

Half Bridge Functional Blocks

- DZL & VDDL regulator & UVLO
- Bootstrap SW
- DZH & VDDH regulator & UVLO
- HS Gate Driver
- LS Gate Driver
- Input comp. & logic
- Parameters IPK, VPK, TC, etc.

Top-Level Model Parameters

<table>
<thead>
<tr>
<th>#</th>
<th>Parameter Name</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_{CITH}</td>
<td>V_{CC} Undervoltage Lockout Threshold</td>
<td>9.0</td>
<td>V</td>
</tr>
<tr>
<td>2</td>
<td>V_{CHYS}</td>
<td>V_{CC} Undervoltage Lockout Hysteresis</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>3</td>
<td>V_{LTH}</td>
<td>V_{I} Input Logic Threshold</td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td>4</td>
<td>V_{LHY}</td>
<td>V_{I} Input Logic Hysteresis</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>5</td>
<td>V_{BTH}</td>
<td>V_{B} Undervoltage Lockout Threshold</td>
<td>9.0</td>
<td>V</td>
</tr>
<tr>
<td>6</td>
<td>V_{BHY}</td>
<td>V_{B} Undervoltage Lockout Hysteresis</td>
<td>0.5</td>
<td>V</td>
</tr>
</tbody>
</table>

- Each Navitas power IC product will be released to public with a Spice model
- It captures all functionalities and behaviors
- Spice models combines Angelov and behavioral techniques
 - Fast and accurate
 - Ideal for detailed in-circuit waveform and power loss study
650V GaN eMode FET Output Curves

Datasheet:
\(I_D = 4A \)
\(V_{DS} = 720mV \)

\(I_D = 38A \)
\(V_{DS} = 10V \)
\(25C \)

\(I_D = 18A \)
\(V_{DS} = 600V \)
\(150C \)
Reverse Conduction Characteristics

- Third quadrant I-V curves at 25C and 150C under gate bias
- Synchronous drive reduces reverse conduction loss
Output Capacitance and Charge Simulation

Capacitance

- Coss 200pF full scale

Output Charge

- Qoss 26nC full scale

Model: 22pF @ 400V

Datasheet: 22pF @ 400V

Model: 20.0nC @ 400V

Datasheet: 20nC @ 400V

- Model matches the measurement in datasheet
• Introduction
• Spectre models for IC Design
• SPICE models for detailed system simulation
• Simplis model for high level system simulation
• System simulation example: Active Clamp Flyback
• Conclusions
Optimized for system simulation run time

- Zener startup
- V_{DD} regulator
- UVLO logic
- Gate Drive
- FET
Piece-wise Linear Model

- Nonlinear parameters are largely preserved: speed without loss of accuracy
Simplified Gate Driver

- Gate driver replaced by “Level 1” SIMPLIS native high-level gate driver block
- Driver parameters adjusted to meet timing of T_r, T_f
Simulated Switching Waveforms

6ns $V_{DS} t_r$
Max $dV/dt = 80$ V/ns
Load dependent

Adjustable fall time
dV/dt 30-150 V/ns
Programming R dependent
• Introduction
• Spectre models for IC Design
• SPICE models for detailed system simulation
• SIMPLIS models for high level system simulation
• System simulation example: Active Clamp Flyback
• Conclusions
Active Clamp Flyback & GaN IC: High Density ZVS

- **World’s smallest 27W USB-C**
- Available now from amazon.com

- **World’s smallest Charger 42W (30W-C + 18W-A) + Battery Pack (5,000 mAhr)**
- Available now from [Apple Store](https://www.apple.com/store)
ACF Simplis Models: Controller & GaN ICs

Very fast and accurate for startup, transient, line cycle ripple, etc.

Schematic from Texas Instruments. System jointly developed with Navitas
Detailed and accurate enough for system optimization

V_{SW} is half-bridge midpoint
 - Detailed soft switching waveforms

I_{SEC} SR current
 - Rms current analysis and reduction

I_{PRI} transformer current
 - Minimize negative current to achieve ZVS and reduce rms
Various modes of operation can be observed and analyzed during startup
 - Current limit mode, burst mode, ACF mode, Vout transient
Simplis Sim Example: Load Transient

- I_o steps from full load to half load
- V_{OUT} rises due to response delay
- Settles down by entering into burst mode
• Introduction
• Spectre models for IC Design
• SPICE model for detailed system simulation
• Simplis model for high level system simulation
• IC application example: Active Clamp Flyback
• Conclusions
Conclusions

- eMode GaN is suitable for power IC integration
- Proprietary PDK for robust GaN Power IC design and manufacture
- Accurate multi-tier models are developed
- Advanced, highly-accurate, 4-terminal symmetric, scalable GaN FET Verilog model for IC design
- Accurate SPICE model for each product is essential for optimal accuracy
- SIMplis models also available for released products for ultra fast top level system design
- GaNFast™ Power ICs are successfully developed and in mass production